
Efficient use of the Linux
command line in the Bash shell

Marc van der Sluys

Nikhef/GRASP, Utrecht University
The Netherlands

September 2, 2023



Copyright © 2016–2023 by Marc van der Sluys

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted
in any form or by any means, including photocopying, recording, or other electronic or
mechanical methods, without the prior written permission of the author, except in the case of
brief quotations embodied in critical reviews and certain other noncommercial uses permitted
by copyright law. For permission requests, contact the author at the address below.

http://eubs.sf.net

http://pub.vandersluys.nl

This document was typeset in LATEX by the author.
The official GNU Bash logo was created by the Free Software Foundation.

http://eubs.sf.net
http://pub.vandersluys.nl


Contents

1 Introduction 4

2 Directories 4
2.1 Moving around in the directory tree . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Creating and removing directories . . . . . . . . . . . . . . . . . . . . . . . 5

3 Using files 5
3.1 Managing files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Reading text files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Using the less program . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Text editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Bash scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Users and groups 7
4.1 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.3 The superuser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Job control 8
5.1 Issuing multiple commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2 Foreground and background jobs . . . . . . . . . . . . . . . . . . . . . . . . 9

5.2.1 The jobs, fg, bg and kill commands . . . . . . . . . . . . . . . . . . . 9
5.2.2 Processes and the ps, kill and top commands . . . . . . . . . . . . . 10

5.3 Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.4 Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Editing the command line 10
6.1 Tab completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.2 Reusing a previous command . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6.3 Moving around on the command line . . . . . . . . . . . . . . . . . . . . . . 11
6.4 Editing the current command line . . . . . . . . . . . . . . . . . . . . . . . 11
6.5 Resetting your terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 Information about your system 12
7.1 Man pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7.1.1 Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7.1.2 Contents of a man page . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.1.3 Navigating a man page . . . . . . . . . . . . . . . . . . . . . . . . . 13

7.2 Bash help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 Setting up your bash environment 13
8.1 Environment variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.2 Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.3 .bash profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.4 .bashrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

9 Using a terminal in a graphical environment 15
9.1 Switching between windows . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.2 Using virtual desktops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.3 Copy and paste between windows . . . . . . . . . . . . . . . . . . . . . . . . 16

3



1 Introduction

Using a shell or ‘the command line’, as opposed to a graphical program, can be extremely
fast, albeit Spartan.1 The drawback is that you will have to know very well what you
are doing (which of course adds to the speed). I also notice that a key combination is
often pressed by my fingers before my brain is aware what is going on.2 To me, using a
GUI rather than the command line is often like writing an email by selecting the words
from a dictionary rather than typing them using the alphabet and keyboard. Also, I feel
switching from keyboard to mouse or vice versa forms a significant overhead, and the
command line allows you to stick to the keyboard in most cases.

In addition, I often have to repeat a set of commands. For example, I might need to select
certain lines from a file (using grep), make some changes in those lines (sed), convert
them to a different format (awk) and save them in a file. And then I need to do the same
four things to another 50 files. The advantage of shell commands is that you can copy
them into a text file, make the file executable, and you have created ascript script, a lightweight
program, that does the job for you. Add a for loop over all files, and your script replaces
those 200 commands with only one.

When using the command line, one uses anshell interactive shell, which forms the layer or
interface between the user and the operating system. Commands given in the command-
line shell will be interpreted by the system and carried out if possible. A default shell on
many systems is the Bourne Again SHell, orbash bash [1].3 While the use of a command-line
shell may be inherently faster than using a GUI, the use of bash itself can be sped up
significantly as well, since in many cases commands or file names do not have to be typed
out in full, but can be completed semiautomatically, or reused. Many shortcuts exist to
perform these actions quickly. These are not bash per se, but many are provided by the

readline readline [2] package (by the same authors) — see man readline for more information.
The tips and tricks in this document can improve your experience when using the bash
command-line shell dramatically.

2 Directories

2.1 Moving around in the directory tree

Use the commandcd cd (change directory) to move around the directories in your file
system. Note that the directory name may or may not have a trailing forward slash.
They are equivalent: cd dir does the same as cd dir/. The slash denotes the separation
between directory names, and comes in handy when you cd into multiple directories at
once: cd dir1/dir2. By issuing cd without an argument, you will jump to your home
directory (/home/<user> or ∼).

The commandcd .. cd .. moves you to the parent directory of the current directory, often
called going ‘up’ one directory (although this moves you one step closer to the root
directory (/) in your directory tree, which suggests it ought to be called ‘down’ in this
analogy). You can combine this with other cd commands, for example by moving ‘up’ from
the current directory into the parent directory and from there into another subdirectory
using e.g. cd ../dir1.

cd -
cd - returns to the previously visited directory. Issuing the command repeatedly with-
out any other cd call will have you jump back and forth between the last two directories.

If you want to specify an absolute path to cd into, you specify it from the root directory
(/),cd / e.g. cd /usr/bin/. If my root directory contains the two subdirectories dir1 and dir2,

1In my experience, ‘Spartan’ often turns out to mean ‘efficient’.
2To be fair, this may be an issue with my brain.
3For alternative shells, search for sh, csh, tcsh, fish, ksh, zsh, . . .

4



and I am currently in dir1, I can cd into dir2 in two ways: using the absolute path: cd

/dir2 and using the relative path: cd ../dir2.

If the absolute path lies somewhere in your home directory, you can replace the
‘/home/<user>’ part with ‘∼’, e.g. cd ∼cd ∼/Documents/. The command cd ∼ is equiv-
alent to cd (without argument).

If you want to see where you can cd into, or whether the current directory contains the
file you are looking for, use the lsls command to list the directory contents. See Sect. 3.1
for more details.

Another way to check which directories are available to change into is to use TabTab completion

by typing cd and pressing
�� ��Space

�� ��Tab
�� ��Tab (see Section 6.1). The shell will show the

solutions that can be cd-ed into, i.e. directories.

To see where in your file system you are currently located, issue the command pwdpwd (print
working directory). This will show the absolute path of your current directory.

2.2 Creating and removing directories

To create a new directory as a subdirectory of the current directory, you can use the
mkdirmkdir command, e.g. mkdir newdir. Removing a directory, if it is empty, can be done

using rmdirrmdir. In order to remove a directory and all its content (files, subdirectories)
recursively, use the rm -rrm command (with care!): rm -r olddir/.

3 Using files

3.1 Managing files

You can list the files in the current directory by typing lsls. To see the properties of those
files, like the size, ownership and permissions, use the long format: ls -lls -l. The very first
character in the line shows whether the file is ‘special’: d for directory, l for symbolic link,
c and b for a character and block device, p for a pipe and s for a socket. The next three
blocks of ‘rwx’ indicate whether the user, group members or others are allowed to read,
write and/or execute the file. Note that directories must be executable in order to cd into
them. See also chmod below. If you are only interested in the most recent files, sort them
reversely by time using ls -lrt and look at the bottom of the list. ls -a shows all files,
including hidden files starting with a dot.

More information about the file type can be obtained using the filefile command, e.g.:
file file1.

You can copy a file elsewhere, e.g. into a subdirectory using the cpcp command: cp file

dir/. This duplicates the existing file, so that you have two independent copies. The
target can also be in the current directory, e.g. cp file1 file2, which results in two
copies with different names.

Moving a file using the mvmv command puts it elsewhere, removing the original. To move
file1 ‘up’ one directory, do mv file1 ../. You can rename a file by ‘moving’ into a
different name in the current directory: mv file1 file2. By default, the mv command
overwrites the destination file if it exists. Hence, it is a good idea to use mv -imv -i, which
will prompt you before overwriting. In fact, I have an alias set that makes this the default
behaviour (see Sects. 8.2 and 8.4). This behaviour can be overridden by specifying mv -f

to force overwriting existing files.

To remove a file, use the rmrm command: rm file. By default, no confirmation is asked
before deleting the file, so be careful. Again, I use the alias rm -irm -i, which will ask for
confirmation (see Sects. 8.2 and 8.4). Override this with rm -f.

5



Finally, you can change the permissions (read, write execute) of a file usingchmod chmod,
either using mode bits or octal mode. For instance, chmod u+x file gives the user (u)
permission (+) to execute (x) the file, while chmod go-rwx file denies (-) read, write and
execute (rwx) permissions to group and others (go). See man chmod for more information
and man 2 chmod for extra details on the octal mode. In a similar way, the owner and
group of a file can be changed usingchown chown.

3.2 Reading text files

You can print the contents of a text file to the screen by issuing the commandcat cat file.
For large files, this may take some time and make it difficult to scroll back to earlier
output. If you are interested in the first part of the file, usehead head: the command head

-20 file shows the first 20 lines. The commandtail tail -30 file shows the last 30 lines
of a file. All three commands and more are included in the command less (see the next
section).

3.2.1 Using the less program

To have more control and a clean screen afterwards, useless less file [3]. This will show

you the first screen of text. You can jump screen pages by pressing
�� ��Space , jump to the

beginning or end of the file by pressingg, G, q
�� ��g or

�� ��G respectively, and quit by pressing
�� ��q .

Searching forward is done by pressing a forward slash/ (
�� ��/ ) followed by the search term and�� ��Enter . Search for the next match by pressingn

�� ��n . Reverse searching can be done using

the question mark? (
�� ��? ), followed by the search term and

�� ��Enter . Pressing
�� ��n searches for

the previous match before the current one. Note that searching is case sensitive by default.
You can open the text in your default editor (see the $EDITOR variable in Section 8.1) by
pressingv

�� ��v .

The command less can also be used as a pager, i.e. to paginate long texts, as inpager ls -l

| less. I have set less as my default pager using the $PAGER environment variable (see
Sect. 8.1).

3.3 Text editors

When selecting a text editor, consider using one that can run in a terminal. The great
advantage is that it uses key combinations to perform the mostly used tasks, which makes
them fast in use. Another pro is that these editors are easy to use when logged in to a
remote machine over a slow connection. Some editors may have a terminal and a graphical
mode, which makes them very flexible and useful.

If you’ll be using a text editor under Linux (or other UNIX-like system) a lot, for example
because you’re a student of physics or computer science, it may well be worth your while
to look into emacs [4] orvi vi [5]. While vi is installed on basically all GNU/Linux systems
by default,emacs emacs is installed on most and easily installable on virtually all other Linux
systems. Both editors can run in a terminal as well as with a GUI (vi clone vim has
a GUI version gvim) and are available for a number of other operating systems as well.
They support many languages, and are extensible, so that they will probably also support
languages that do not yet exist.4 They have been around for nearly 50 years, and may
well be around for another 50. Which of the two you choose is largely a matter of taste.
In my opinion, the main difference is that with vi you can perform the basic tasks with a
few key strokes, while in emacs you will need a few more key strokes but can do virtually
anything with them. The additional advantage of emacs is that many of these keystrokes
can also be used in the bash shell. vi is even more Spartan5 than emacs and has a steeper

4I use about 20 such languages or modes. I would consider learning a different editor or IDE for each
one of them about as cumbersome as learning a different natural language for every person I regularly talk
to.

5Efficient?

6



learning curve. Emacs’s menu can be accessed with a mouse in the GUI and F10 in the
console version. To get started with emacs, see [6].

If you need a text editor in a terminal, and have never used one before, you can try nanonano

[7], which is relatively user friendly. The command nano file.txt will open the selected
file and you can close the editor again by pressing Ctrl-X and following the instructions
at the bottom of your screen. Examine the status lines for more basic nano commands,
or press Ctrl-G for help. Nano provides some basic syntax highlighting for e.g. Bash, C,
Python, Fortran and LATEX. Nano settings can be found using man nanorc and saved in
∼/.nanorc. You can quickly get up to speed with the nano basics using [8].

A list of text editors, sorted by type, is provided by Wikipedia [9].

3.4 Bash scripts

The details of bash scripting are beyond the scope of this article, but the basics are simple.
A bash script is little else than a text file with executable permission that contains a list
of bash commands, which are usually executed in the order in which they occur. The file
name is arbitrary, but often has the extension .sh. The first line of the script should read
#!/bin/bash, to indicate that it is to be interpreted by bash. Hence, a simple example
of a trivial bash script that prints the current directory, changes to the root directory and
shows its contents would look like this:

Listing 1: Script to cd to the root directory and list its contents.� �
1 #!/bin/bash

2 pwd

3 cd /

4 ls� �
Create it in your favourite text editor (emacs script.sh), save it, make it executable
(chmod u+x script.sh) and execute it (./script.sh).

For all the details on bash scripting, using variables, conditional statements, loops, func-
tions and much more, see [10].

4 Users and groups

4.1 Users

In order to use the GNU/Linux system, you need a user account. You log in as a user
with a user name and password, given to you by the system administrator. You can change
the password by issuing the passwdpasswd command. The system recognises you by your user
identity (uid), which is a number (usually 1000 or higher), and unique for each user. You
can see your uid by typing idid. Using your uid, the system can handle the different file
permissions (read, write and execute) on a per-user basis, using the chmodchmod command (see
Sect. 3.1). For example, you could allow yourself to write to a given file while other users
are denied that permission. If you would like to temporarily log in as a different user,
you can use the command susu. For instance, su - joe would change your identity to the
user joe (the - is recommended if you want to keep your environment). You can see who
you are (as which user you are currently logged in) by issuing the command whoamiwhoami. File
ownership can be transferred to a different user using chownchown.

4.2 Groups

Each user belongs to a group. By default this is often the group users or a one-user group
with the same name as the user. The purpose of groups is to allow a finer tuning of
permissions. For example, on a school server, all teachers could belong to a group called
teachers, while all students could be part of the group students. Directories containing
lecture notes could have the read permission set to ‘allow’ for both groups, but write

7



permission to the group of teachers only. The directories containing exams, on the other
hand, would have no read permission for students. You can check your group issuingid id.
The group ownership of a file can be changed usingchgrp chgrp file (or chown). Read, write
and execute permissions (rwx) for the user (owner), group and others (not belonging to
the group) for a given file, as well as the user and group that own the file, are shown by
ls -l file (see Sect. 3.1).

4.3 The superuser

The superuser is the administrator of the system, usually calledroot root. The superuser
has permission to read and write any file (unless she denies it to herself, which she can
change using chmod). In particular, root has access to the system files. Since the root
account exists on all systems, it must be guarded by a strong password. In addition, many
systems do not allow root access over ssh, since the user name is already known and only
the password must be guessed. Apart from that, the superuser account provides unlimited
power and should only be used for system administration. Hence, most administrators
have a normal user account for normal use of the system. To administer the system, they
log in as a normal user, before switching over to the root identity using the root password.
This can be done by issuing thesu - su - command without a user id.

Normal users can obtain (partial) root privileges from the superuser to perform specified
tasks. In such a case, the user can prefix the commandsudo sudo to their actual command,
upon which the system will ask the user’s password and execute the provided command
with root privileges.

5 Job control

In order to start a program, you can simply type its name followed by
�� ��Enter . The

job will run in theforeground foreground until it exits, after which the control of the terminal is
returned to bash, which will show an empty command prompt.

If you want to run a program in the current directory, e.g. one you have just compiled,
you need to prefix./ ./, as in ./prog. The reason is that the current directory (. or ./) is
not in your PATH by default for security reasons.

If you want to benchmark a program, you can use thetime time command, which will display
the real (clock), user (program) and system (overhead) run times of your program: time

./prog.

5.1 Issuing multiple commands

In order to run a job in thebackground background, you can put a single ampersand after the
command, for example& ./prog &. This has the effect of returning the control of the
terminal back to the user as soon as the program has started, so that you can do something
else while the program runs. If the program produces output, that may frustrate what
you are doing. The ampersand can be used to start two programs to run at the same time
as well: ./prog1 & ./prog2. In this example, prog1 is started, control is handed back to
the shell, which launches prog2 to run concurrently (and in the foreground in this example
— a second ampersand would be needed to run prog2 in the background as well).

When I’m writing or debugging a program, I often compile, run; compile, run; et cetera to
see if the program’s output makes sense. Hence, I’m repeating the same pair of commands
very often. In order to save typing, I put the two commands on one line. The default
way to do this is by using a semicolon (;); , as in gcc prog.c -o prog; ./prog. This will
always issue both commands.6

6Unless the first command e.g. wipes your disc.

8



If the program doesn’t compile in the previous example, there is no point in running the
code. Hence, I actually use a logical AND by typing a double ampersand &&(&&): gcc

prog.c -o prog && ./prog. This will execute prog only if compilation succeeded.

Analogously, the opposite can be achieved using the logical OR: ||gcc prog.c -o prog ||
echo ’Compilation failed’.

5.2 Foreground and background jobs

5.2.1 The jobs, fg, bg and kill commands

While there can be only one foreground job running at any time, several jobs may run
in the background concurrently, or be suspendsuspended (also called stopped). Jobs that need
user interaction and are run in the background, will be suspended as soon as they are
started. A job running in the foreground can usually be suspended by pressing Ctrl-ZCtrl-Z.
Suspension of a job means that the job is temporarily stopped, or rather paused, but can
be continued later. Note that this is very different from killing a job by pressing Ctrl-CCtrl-C,
after which the job cannot be continued.

The command jobsjobs lists all jobs that were started from the current shell and are suspended
or running in the background. The jobs are labelled by a number between square brackets,
e.g. [1][1], and the label is defined in the current shell only. You can refer to that job by
prefixing a percent sign to the label, %1%1 in this example. A plus behind the label indicates
the default job that will be referred to if the %1 indicator is omitted.

When a job is suspended, typing fgfg will allow it to continue to run in the foreground.
Typing bgbg will allow it to continue to run in the background. You can specify a particular
job by typing e.g. fg %3 or bg %1. If this indicator is omitted, the default job will be
continued. A running background job can be brought to the foreground directly using the
fg command.

If a job is running in the background, it can be suspended or killed using the killkill com-
mand.7 The command kill %1 will kill the selected job using the TERMINATE signal
(unless that signal is caught and handled differently by the job). In order to kill a pro-
cess using a signal that cannot be caught, use kill -KILL %1. On Linux systems this
is equivalent to kill -9kill -9 %1. In order to suspend a running background job, use kill -TSTPkill

-TSTP %1. This can be useful if it is using too much CPU time while you quickly need
to do something. The job can later be continued using bg, or kill -CONTkill -CONT %1. For a list
with signals and their numbers, type kill -lkill -l (lower-case ell).

In order to have a long job run in the background without using all CPU time, you can
lower its priority using the nicenice command, for example nice -n ./prog &, where n is a
number between 0 and 19. The default nice value with which a job is started is 0, and
higher values indicate lower priorities. Hence, to be able to use your system normally
and only allow a job to run when the system is not doing anything else, use nice -19

./prog &.8 If you forgot to set the niceness of your job when starting it, you can change
(increase only) it using the renicerenice command. Only root can assign negative nice values,
or decrease the nice value.

Note that a job needs standard output and error to exist in order to run. Hence, if you
close your terminal after launching a background job, the job will usually be killed soon
after. In order to ensure that the program continues running, you should run it in the
background and redirect its standard output and error to a file (e.g. using ./prog &>
output.txt &, see Sect. 5.3). This allows you to ssh into a machine, start a long job and
log out again, while it also provides you with a log file to analyse later. If you don’t want

7The kill command is named unfortunately, since it can send many types of signal to a process, not
just kill.

8Note that the nice value in this example is +19 — the - is a dash, not a minus.

9



to save possible output (or error) messages, redirect to the special file /dev/null, which
acts like a black hole (see Sect. 5.3).

5.2.2 Processes and the ps, kill and top commands

While jobs are defined in the shell they were started from, these programs also have a
unique process identifier (PID), which can be shown by the commandps ps. While the job
ID is defined in the local shell only (and hence fg and bg work only in that scope), the
PID is unique in the system. This allows you to send a signal (using kill) to a process
that was not started in the current shell. In order to list all your processes, issueps x ps x.
The first column usually contains the PID. The commandps -l ps -l also lists the process
state, its parent’s PID (PPID), and the priority and nice values of the processes. The

kill kill command can be used to kill a process with a given PID (without a percent symbol),
e.g. kill -9 12345 to kill the process with PID 12345. This way, processes can also be
suspended and continued, using the TSTP and CONT signals, as we saw above.

If a certain process is using up a lot of CPU time, you can identify that process using the
top top command. If installed on your system, htop and atop are useful alternatives. Top

programs sort all processes to CPU usage by default, and list their PIDs, so that it is
straightforward to kill the process that is causing the mayhem. Most top programs can
kill processes too, usually by typing ‘k’ and specifying the desired PID.

5.3 Redirection

You can useredirection redirection to use other sources or destinations for standard input, output
and error. If you want to send standard output to a file rather than to the screen, you
can use the greater-than symbol>, 1> > (short for 1>): ls > filelist.txt. To run a job in
the background without the cluttering output, redirect it to /dev/null (which is a special
file that works like a black hole9):/dev/null ./prog > /dev/null &.

While > redirects standard output, it doesn’t affect standard error, which is still sent
to the screen. In order to redirect both standard output and error, use&> &>: ./prog &>
/dev/null. To redirect only standard error, use2> 2>: ./prog 2> /dev/null. If you want
to redirect standard error into standard output (e.g. because you want to use it later in
a pipe), you can use2>&1 ./prog 2>&1 (without the ampersand, a file named ‘1’ would be
created).

Redirection of standard input can be useful if you know which commands you should type
in a program to do what you want. For example, the following plotting program creates
the graph I want from columns 1 and 3 of data.txt and then quits by pressing ‘p’, ‘1’, ‘3’
and ‘q’. When I create the text file input.txt, containing just the line ‘p 1 3 q’, this can
be used as input rather than standard input using the smaller-than symbol< <: ./plot

data.txt < input.txt.

5.4 Pipes

Pipes can be used on the command line to use the output of one command as input for the
next. The symbol used for a pipe is| |: ls -l | less will list the contents of the current
directory and use less as a pager. ls -1 | wc -l will display the number of entries in the
current directory (the number of lines produced by ls -1 (using the number one)).

6 Editing the command line

Many of the hot keys described in this section are readline features. Detailed information
can often be found in the SEARCHING and EDITING COMMANDS sections of theman read-

line

man readline

page.

9Information goes in and is never heard of again.

10



6.1 Tab completion

Bash allows you to complete a command, file or directory name by pressing Tab
�� ��Tab . If the

solution is unique, that solution will be used. If not, a partial completion will occur, and
the system will print the remaining options by pressing

�� ��Tab two or three times. This
saves you the trouble of removing the command and issuing the ls command to see what
the options are.

Depending on the packages installed on your system, bash completion can be rather smart.
For example, if several files exist, but only one subdirectory, cd

�� ��Space
�� ��Tab will select

that directory, since you cannot cd into a file. If the current directory only contains the
files file.bak and file.odt, typing libreoffice

�� ��Space
�� ��Tab will select file.odt, since the

extension suggests it is the only solution that can be opened by that program.

6.2 Reusing a previous command

The easiest way to move around the command-line history is by using the up and down
arrow keys (

�� ��↑ ,
�� ��↓ ). ↑, ↓Once you arrive at the desired command, you can either use it

directly by pressing
�� ��Enter , or edit it first, and then press

�� ��Enter . There is no need to

move to the end of the line before hitting
�� ��Enter .

If the command you intend to reuse was issued more than a few commands ago, it is more
useful to do a reverse search by pressing Ctrl-R

�� ��Ctrl
�� ��R and typing a (unique) part of the

command you are looking for. You will see the most recent match appear. If that is not
the desired command, press

�� ��Ctrl
�� ��R again, or type additional characters to do a more

specific search. Once you have found the desired line, either press Enter to execute it,
or press Esc to exit search mode and edit the line before issuing Enter. Pressing

�� ��Ctrl�� ��R twice (without typing a search string) will search for the last search string you used.

If you want to execute the line found, you can press Ctrl-O
�� ��Ctrl

�� ��O instead of
�� ��Enter , which

will execute the line and jump to the next line in your history, rather than returning to
the end of your history list. If you skipped past the line you were looking for, Ctrl-S

�� ��Ctrl
�� ��S

can search forward again.10

6.3 Moving around on the command line

In order to edit the current command-line text, you will need to move around to the
position of interest. Using the ←,→left and right arrow keys (

�� ��← ,
�� ��→ ) is the simplest

solution. However, in particular if the line is long, it may not be the most efficient way.

On most systems, you can use the Ctrl-←, -→Ctrl or Alt key in combination with the left and
right arrow keys to jump words rather than single characters.

Jumping to the beginning or end of the line can be done quickly using Ctrl-A, -E
�� ��Ctrl

�� ��A or
�� ��Ctrl�� ��E respectively.

Finally, Ctrl-S, -R
�� ��Ctrl

�� ��S and
�� ��Ctrl

�� ��R can be used to search forward and backward in the
current line, as well as in other lines in your history.

6.4 Editing the current command line

If you mistyped or want to adapt a previously issued command to your wishes, you will
need to edit the current contents of the command line. The most straightforward way of
doing this is by removing content using the BackspaceBackspace key and typing new text.

You can delete entire words using Alt-BS
�� ��Alt

�� ��Backspace .

10On some systems,
�� ��Ctrl

�� ��S may freeze the shell. In that case, issue
�� ��Ctrl

�� ��Q to continue. You can

disable XON/XOFF flow control by typing stty -ixon [11].

11



Cutting everything to the beginning or end of the line can be done usingCtrl-U, -K
�� ��Ctrl

�� ��U and�� ��Ctrl
�� ��K respectively. The last text cut this way can be yanked back in at the position

of the cursor by pressingCtrl-Y
�� ��Ctrl

�� ��Y . Directly after that, you can paste earlier cuts with

Alt-Y
�� ��Alt

�� ��Y .

Many typos can be fixed withCtrl-T
�� ��Ctrl

�� ��T , which swaps the character under the cursor with

the previous one. PressingAlt-T
�� ��Alt

�� ��T swaps the word under the cursor with the previous
one.

If you make a mistake whilst editing the command line, you can undo your last edits by
pressingCtrl-/

�� ��Ctrl
�� ��/ . If you made many mistakes, you can revert to the original command

line by pressingAlt-R
�� ��Alt

�� ��R .

6.5 Resetting your terminal

If your terminal starts producing garbage as you type, or doesn’t echo the characters you
type at all, you can reset it using thereset reset command (which comes with the ncurses
package [12]). If it isn’t installed, type echo -e \\033c instead.

7 Information about your system

7.1 Man pages

One of the most useful, albeit Spartan11 ways to obtain information on your system are
the manual pages or man pages [13]. They do not only provide you with the syntax
of system commands on the command line, but also with information on system-library
calls, standard C library functions and more, which is very useful when working on Linux
systems or Linux system programming.

Man pages are displayed using theman man command, followed by a command or function
name. For example, in order to see all the options of the ls command, I simply type man

ls. Information on C header files can also be found in the man pages, e.g. man stdio.h.

In order to find the man page you are looking for, you can search by keyword usingman -k man

-k. For instance, to get a list of man pages that deal with semaphores, issue man -k

semaphore.12

7.1.1 Sections

Man pages are categorised into numbered sections. The most important ones are:

1 User commands: information on command-line commands;

2 System calls: information on Linux system calls;

3 C library functions: information on the C standard library;

7 Miscellanea: background information;

9 Kernel Hackers Manual: information on the Linux-kernel API [14] and Linux de-
vice drivers [15] (unofficial13).

A complete list of sections can be found by typingman man man man.

If a command or function is only listed in one section, man will automatically list the
information from that section. However, in many cases an entry occurs in multiple sections.

11Efficient!
12This command searches a database with short descriptions of the available man pages. man -K searches

the actual man pages, which is much slower.
13The Kernel Hackers Manual comes with the Linux-kernel source, and can be generated with the

command make mandoc in the directory /usr/src/linux.

12



For example, kill is both a command and a Linux system call. Hence, I need to specify
the section number as an option: man 1 kill will open the information on the command,
while man #man 2 kill shows the Linux programmer’s manual.

Note that apart from syntax, the library manuals also include information such as the
header file that needs to be included in order to use a function, and compiler options that
are necessary. Two advantages of the man pages is that they are specific to your system
and available without a network connection.

7.1.2 Contents of a man page

Each man page is itself subdivided into sections. The following sections often occur, but
are not mandatory. They are usually written in capitals.

NAME Name of the command or function;

SYNOPSIS A brief description of syntax, header files and/or compiler options;

DESCRIPTION A description of the command or function;

OPTIONS A detailed description of each command-line option or interface variable;

FILES Files that affect the program or function (e.g. settings);

ENVIRONMENT Environment variables that affect the program or function;

EXAMPLES Example usage;

BUGS Known bugs or issues;

AUTHOR The author of the program or function;

SEE ALSO Related programs or functions (with their sections between brackets).

7.1.3 Navigating a man page

A man page usually spits out a lot of text, paginated by a pager. By default, man uses
the less command, but this may be altered by setting the $PAGER environment variable
(see Sect. 8.1). Section 8.4 shows how to add colours to your man pages when using less,
which can make the information much easier to read. Section 3.2.1 shows you how to move
around and search in a man page using less keystrokes.

7.2 Bash help

While the man pages give detailed information on external commands (i.e., executables
that sit in e.g. /usr/bin/), bash’s built-in commands are not included. They can be con-
sulted using the helphelp command. Without an argument, help lists all internal commands
with a brief list of options, while help <command> gives more information on the com-
mand of interest. If you feel that help output ought to look more like man pages, use the
-m option (see help -m help). Information on the internal commands can also be found
when searching for the SHELL BUILTIN COMMANDS section of man bashman bash.

8 Setting up your bash environment

You can design your bash environment to suit your needs using e.g. environment variables
and aliases. Unfortunately, once you close your shell, your settings will be lost. This
can be solved by saving your definitions in the files .bash profile and .bashrc in your
home directory, so that they will be executed each time you log in. Below I describe some
useful variables and aliases, and give some example content for ∼/.bash profile and
∼/.bashrc.

13



8.1 Environment variables

Environment variables are the ‘global variables’ of your system. They can contain your
preferences, such as your favourite editor, or how your command prompt looks. Of course,
each time a program wants to open an editor, the system could ask you which editor to
use. However, since your preferred editor is likely to remain constant over longer periods
of time, it is more useful to define it in the variable$EDITOR $EDITOR and have the program check
that. You can see the current value of the variable by typingecho echo $EDITOR.14

Other environment variables that are often set include$PATH $PATH, which contains a list of
directories where your system searches for a binary executable with the desired name
whenever you type a command,15$PAGER $PAGER, which sets the default pager for e.g. man pages
that are longer than one screen, and$PS1 $PS1, which defines the command prompt at the
beginning of each new command line (in the example in Listing 3 it takes the format
[user@machine currentdir]$ using colours). Using a coloured prompt helps you to find
the first error in several screenfulls of gcc output following the output from the previous
gcc command. (Instead, or in addition, you canCtrl-L Ctrl-L to clear your screen between
compilations, or start your command line withclear clear && gcc ....) Also, I have a very
different and even more conspicuous prompt for the superuser, constantly reminding me
that I am root and should be careful.

Exportingexport an environment variable causes it to be available in the environment of a com-
mand that is executed later.

8.2 Aliases

An alias provides a new name for a command or set of commands. For example, since I am
lazy, I don’t bother with typing exit each time I want to quit a shell — I use ‘lo’ (short
for ‘log off’) instead. Also, I often want to list the contents of a directory in coloured, long
format. Rather than typing ls -lGh - -color=auto each time, I have defined the alias
lls for it usingalias alias lls=’ls -lGh - -color=auto’. From that moment on, typing
lls as if it were an existing command does exactly what I want. More examples of aliases
can be found in Listing 3.

8.3 .bash profile

The file .bash profile in your home directory is sourced by bash for login shells, e.g.
when logging in into X, into a text console, or through ssh. It is not sourced when starting
a new shell from X (though this may have changed recently). In that case, only ∼/.bashrc
is sourced and adding the line [[ -f ∼/.bashrc ]] && . ∼/.bashrc, which sources
.bashrc in your home directory if present, would be a good idea.

The file ∼/.bash profile is mainly used to set the $PATH environment variables, e.g. (an
electronic version of this file can be found at [16]):

Listing 2: Example content for ∼/.bash profile.� �
1 # This file is sourced by bash for login shells , e.g. when logging into X, logging

2 # into a text console or login in using e.g. ssh. This file is NOT sourced when

3 # starting a new shell from X. In that case , only .bashrc is sourced.

4 # See also https :// stackoverflow.com/a/415444/1386750

5 #

6 # The following line runs your .bashrc when logging in through e.g. ssh:

7 [[ -f ~/. bashrc ]] && . ~/. bashrc
8

9 # Set and export PATH:

10 PATH="$PATH:/sbin:/usr/sbin:/usr/local/sbin"
11 export PATH� �

14If not set, the default editor is likely to be vi.
15e.g. ls will usually be found in /bin/ls. With an empty $PATH variable, bash will return ls: No such

file or directory.

14



Other variables you may want to set here are $LIBRARY PATH, $LD LIBRARY PATH, etc.
The reason I define $PATH here is because it adds to the existing content of that variable.
If placed in ∼/.bashrc, many directories could appear twice (e.g. if the server started X,
and I logged in through ssh). Check the content of your $PATH variable by typing echo

$PATH.

8.4 .bashrc

The file .bashrc in your home directory is sourced when starting a shell after logging
in (e.g. from X), but not when logging in via ssh or a text console. In that case only
.bash profile is sourced.16 An electronic version of the example file below can be found
at [16].

Listing 3: Example content for ∼/.bashrc.� �
1 # .bashrc is only read by a shell that ’s both interactive and non -login (e.g. when

2 # starting a terminal from X). See https :// stackoverflow.com/a/415444/1386750

3

4 # Coloured command prompt for user (/root):

5 export PS1="[\[\033[1;31m\]\u\[\033[0m\]@\[\033[1;34m\]\h\[\033[0m\] \W]\$ "

6 # export PS1 ="[\[\033[1;41m\]\u\[\033[0;1;7m\]@\[\033[0;1;44m\]\h\[\033[0m\] \W]# "

7

8 # Favourite editor and pager:

9 export EDITOR=’emacs’

10 export PAGER=’less’

11

12 # History control:

13 export HISTCONTROL="ignoreboth" # Ignore repeat commands , cmds starting w/ space

14 export HISTSIZE =10000 # Make a history file of 10k lines (def: 500)

15 export HISTFILESIZE =100000 # Make a history file of 100k lines (def: 500)

16 shopt -s histappend # Append to history rather than overwrite

17

18 # Shell options:

19 shopt -s cdspell # Correct minor typos in dir names on cd command

20 shopt -s dirspell # Correct minor typos in dir names on tab compl.

21 shopt -s checkjobs # Do not exit if shell has running/suspended jobs

22

23 # Colour in man pages (when using less as a pager - see man termcap):

24 export LESS_TERMCAP_mb=$’\E[01;34m’ # Blinking -> bold blue

25 export LESS_TERMCAP_md=$’\E[01;34m’ # Bold (sect. names , cl options) -> bold blue

26 export LESS_TERMCAP_me=$’\E[0m’ # End bold/blinking

27 export LESS_TERMCAP_so=$’\E[01;44m’ # Standout mode - pager -> bold white on blue

28 export LESS_TERMCAP_se=$’\E[0m’ # End standout

29 export LESS_TERMCAP_us=$’\E[01;31m’ # Underline - variables -> bold red

30 export LESS_TERMCAP_ue=$’\E[0m’ # End underline

31 export GROFF_NO_SGR =1

32

33 # My aliases for frequently used commands:

34 alias rm=’rm -i’

35 alias mv=’mv -i’

36 alias cp=’cp -ip’

37 alias ls=’ls --color=auto’

38 alias lls=’ls -lGh’

39 alias lo=’exit’

40 alias less=’less -Si’

41 alias du=’du -h’

42 alias ssh=’ssh -Y’

43 # etc...

44

45 # Lazy cd’ing:

46 alias ml=’cd ~/work/UU/Teaching/MachineLearning ’
47 # ... and many , many more ...� �

9 Using a terminal in a graphical environment

In many cases, you will be using a terminal or console in a graphical environment. The
default environment on GNU/Linux systems has been the X Window system x.orgx.org, which
is currently being replaced by WaylandWayland on many systems. The window system in turn
allows desktop environments DE(DEs) like Plasma (KDE), Gnome, Xfce, LXDE, etc. [17]

16Which can in turn source .bashrc, see Sect. 8.3.

15



to run. Here are some tips and tricks to facilitate the interaction between your terminal
and the rest of your graphical system. I use Plasma in x.org as my desktop environment,
but some of the features described below are part of X, while others can probably be
configured in other DEs as well.

9.1 Switching between windows

When I write a computer program, I typically use two windows: one with a bash command
line that I use to compile my program, run it, and check the (screen) output, and one
with my editor. Hence, I want to switch between the two often. Moving my hands from
keyboard to mouse and back takes a lot of time, and hence I use a keyboard shortcut
for this. The default shortcut to switch between windows in KDE isAlt-Tab

�� ��Alt
�� ��Tab . I have

configured it to switch from the current to the previously active window (on my current
virtual desktop), so that one

�� ��Alt
�� ��Tab takes me from my editor to my command line,

and the next
�� ��Alt

�� ��Tab takes me back. Holding
�� ��Alt and pressing

�� ��Tab more than once
allows me to reach the other windows on my desktop.

9.2 Using virtual desktops

Many desktop environments use virtual desktopsVD (VDs). Each VD, or simply desktop
for short, acts as a different monitor, and contain windows that are only active if that
particular VD is active. This is useful to separate the different things you may be doing
at any given time. For example, I am typing this in an editor and have a terminal to
run LATEX in one desktop, while my browser and email program sit in another, and in
yet another desktop I have another console to test some of the commands I describe here
to see whether I’m not mistaken. I switch between VDs in a similar way to switching
windows, using theCtrl-Tab

�� ��Ctrl
�� ��Tab shortcut.

9.3 Copy and paste between windows

In the X Window system, selecting a text with the mouse alsocopy copies it into the clipboard.
Selecting and copying a single word can be easily done by double-clicking it.paste Pasting in X
can be done simply by clicking the middle mouse button or scroll wheel. Note that this
copy/paste clipboard is different from that used by

�� ��Ctrl
�� ��U ,

�� ��Ctrl
�� ��K and

�� ��Ctrl
�� ��Y

for the command line, as described in Sect. 6.4.17

If you want to copy output from a command to the X clipboard, you can usexclip xclip [18],
typically used with a pipe. For example, ls |xclip will copy a list of files in the current
directory to the clipboard. Pasting can be done (apart from clicking the middle mouse
button) with xclip -o. xclip -o > file.txt saves the contents of the clipboard to a
file.

References

[1] Fox, B. & Ramey, C. Bash. URL http://tiswww.case.edu/php/chet/bash/

bashtop.html. Visited 2016-03-20.

[2] —–. Readline. URL https://tiswww.case.edu/php/chet/readline/rltop.html.
Visited 2022-04-21.

[3] Greenwood Software. Less. URL http://www.greenwoodsoftware.com/less/.
Visited 2016-03-20.

[4] Stallman, R. Emacs. URL https://www.gnu.org/software/emacs/. Visited 2016-
03-20.

[5] Moolenaar, B. et al . Vim. URL http://www.vim.org. Visited 2016-03-20.

17Some configuration of your DE may be needed to allow different clipboards/buffers (e.g. emacs and
Plasma) to cooperate.

16

http://tiswww.case.edu/php/chet/bash/bashtop.html
http://tiswww.case.edu/php/chet/bash/bashtop.html
https://tiswww.case.edu/php/chet/readline/rltop.html
http://www.greenwoodsoftware.com/less/
https://www.gnu.org/software/emacs/
http://www.vim.org


[6] van der Sluys, M. Getting started with Emacs. URL http://pub.vandersluys.nl.
Visited 2022-04-13.

[7] Allegretta, C. et al . Nano. URL http://www.nano-editor.org. Visited 2016-
03-20.

[8] Boyd, S. & Vermeulen, S. Nano basics guide. URL https://wiki.gentoo.org/

wiki/Nano/Basics_Guide. Visited 2016-03-20.

[9] Wikipedia. List of text editors. URL https://en.wikipedia.org/wiki/List_of_

text_editors. Visited 2016-03-20.

[10] Cooper, M. Advanced Bash-Scripting Guide, 2014. URL http://tldp.org/LDP/

abs/html/. Visited 2016-08-10.

[11] Linux, A. Arch Wiki: Readline. URL https://wiki.archlinux.org/index.php/

Readline. Visited 2016-08-02.

[12] Ben-Halim, Z., Raymond, E. & Dickey, T. Ncurses. URL https://www.gnu.

org/software/ncurses/. Visited 2016-03-20.

[13] The Linux man-pages project. Man pages. URL https://www.kernel.org/doc/

man-pages/. Visited 2016-03-20.

[14] The Linux Kernel Organization. The Linux Kernel API. URL https://www.

kernel.org/doc/htmldocs/kernel-api/. Visited 2016-05-04.

[15] —–. Linux device drivers. URL https://www.kernel.org/doc/htmldocs/

device-drivers/. Visited 2016-05-04.

[16] van der Sluys, M. Environment settings (bash, emacs, git). URL https://github.

com/MarcvdSluys/han-ese-ops-env. Visited 2019-02-11.

[17] Wikipedia. Desktop environment. URL https://en.wikipedia.org/wiki/

Desktop_environment#Examples_of_desktop_environments. Visited 2016-03-20.

[18] Saunders, K. & Ãstrand, P. Xclip. URL https://github.com/astrand/xclip.
Visited 2016-03-20.

17

http://pub.vandersluys.nl
http://www.nano-editor.org
https://wiki.gentoo.org/wiki/Nano/Basics_Guide
https://wiki.gentoo.org/wiki/Nano/Basics_Guide
https://en.wikipedia.org/wiki/List_of_text_editors
https://en.wikipedia.org/wiki/List_of_text_editors
http://tldp.org/LDP/abs/html/
http://tldp.org/LDP/abs/html/
https://wiki.archlinux.org/index.php/Readline
https://wiki.archlinux.org/index.php/Readline
https://www.gnu.org/software/ncurses/
https://www.gnu.org/software/ncurses/
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/man-pages/
https://www.kernel.org/doc/htmldocs/kernel-api/
https://www.kernel.org/doc/htmldocs/kernel-api/
https://www.kernel.org/doc/htmldocs/device-drivers/
https://www.kernel.org/doc/htmldocs/device-drivers/
https://github.com/MarcvdSluys/han-ese-ops-env
https://github.com/MarcvdSluys/han-ese-ops-env
https://en.wikipedia.org/wiki/Desktop_environment#Examples_of_desktop_environments
https://en.wikipedia.org/wiki/Desktop_environment#Examples_of_desktop_environments
https://github.com/astrand/xclip

	1 Introduction
	2 Directories
	2.1 Moving around in the directory tree
	2.2 Creating and removing directories

	3 Using files
	3.1 Managing files
	3.2 Reading text files
	3.2.1 Using the less program

	3.3 Text editors
	3.4 Bash scripts

	4 Users and groups
	4.1 Users
	4.2 Groups
	4.3 The superuser

	5 Job control
	5.1 Issuing multiple commands
	5.2 Foreground and background jobs
	5.2.1 The jobs, fg, bg and kill commands
	5.2.2 Processes and the ps, kill and top commands

	5.3 Redirection
	5.4 Pipes

	6 Editing the command line
	6.1 Tab completion
	6.2 Reusing a previous command
	6.3 Moving around on the command line
	6.4 Editing the current command line
	6.5 Resetting your terminal

	7 Information about your system
	7.1 Man pages
	7.1.1 Sections
	7.1.2 Contents of a man page
	7.1.3 Navigating a man page

	7.2 Bash help

	8 Setting up your bash environment
	8.1 Environment variables
	8.2 Aliases
	8.3 .bash_profile
	8.4 .bashrc

	9 Using a terminal in a graphical environment
	9.1 Switching between windows
	9.2 Using virtual desktops
	9.3 Copy and paste between windows


